En matemáticas, una función:
es sobreyectiva,[1] epiyectiva, suprayectiva,[1] suryectiva, exhaustiva,[1] onto o subyectiva si está aplicada sobre todo el codominio, es decir, cuando cada elemento de es la imagen de como mínimo un elemento de .
Formalmente,
- Para todo y de Y existe x de X, que cumple que la función: f de x es igual a y.
Definición
Una función sobreyectiva es una función cuya imagen es igual a su codominio. Equivalentemente, una función con dominio y codominio es sobreyectiva si para cada en existe al menos una en tal que .
Simbólicamente
- Si entonces se dice que es sobreyectiva si
Notación
En ocasiones para denotar que una función es sobreyectiva se utiliza la notación:
Cardinalidad y sobreyectividad
Dados dos conjuntos y , entre los cuales existe una función sobreyectiva , se tiene que los cardinales cumplen:
Si además existe otra aplicación sobreyectiva , entonces puede probarse que existe una aplicación biyectiva entre y , por el teorema de Cantor-Bernstein-Schröder.
Véase también
- Función inyectiva
- Función biyectiva
Referencias
- Real Academia de Ciencias Exactas, Física y Naturales, ed. (1999). Diccionario esencial de las ciencias. Espsa. ISBN 84-239-7921-0.
Bibliografía
- Bourbaki, Nicolas (2004) [1968]. Theory of Sets. Springer. ISBN 978-3-540-22525-6.
wikipedia, wiki, leyendo, leer, libro, biblioteca, español, española, descargar, gratis, descargar gratis, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, imagen, música, canción, película, libro, juego, juegos, móvil, teléfono, android, ios, apple, teléfono móvil, samsung, iphone, xiomi, xiaomi, redmi, honor, oppo, nokia, sonya, mi, pc, web, ordenador