En teoría de grafos, un grafo completo es un grafo simple donde cada par de vértices está conectado por una arista.
Grafo completo | ||
---|---|---|
K7, grafo completo de 7 vértices. | ||
Vértices | n | |
Aristas | n (n-1)/2 | |
Diámetro | 1 | |
Cintura | 3, si n ≥ 3 | |
Automorfismos | n! (Sn) | |
Número cromático | n | |
Índice cromático | n, si n es impar n-1, si n es par | |
Propiedades | (n-1)-regular Simétrico Integral | |
Un grafo completo de n vértices tiene aristas, y se denota . Es un grafo regular con todos sus vértices de grado . La única forma de hacer que un grafo completo se torne disconexo a través de la eliminación de vértices, sería eliminándolos todos.
El teorema de Kuratowski dice que un grafo plano no puede contener (o el grafo bipartito completo ) y todo incluye a , entonces ningún grafo completo con es plano.
Ejemplos
Los grafos completos de 1 a 12 nodos son los siguientes:
K1: 0 | K2: 1 | K3: 3 | K4: 6 |
---|---|---|---|
K5: 10 | K6: 15 | K7: 21 | K8: 28 |
K9: 36 | K10: 45 | K11: 55 | K12: 66 |
Véase también
Referencias
KJPIH0UH9YBHBBYUIPIOIJUHU
wikipedia, wiki, leyendo, leer, libro, biblioteca, español, española, descargar, gratis, descargar gratis, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, imagen, música, canción, película, libro, juego, juegos, móvil, teléfono, android, ios, apple, teléfono móvil, samsung, iphone, xiomi, xiaomi, redmi, honor, oppo, nokia, sonya, mi, pc, web, ordenador